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Using only the microscopic dynamics, the nonequilibrium steady state of a one- 
dimensional cellular automaton (CA) model of chemical turbulence is explicitly 
constructed. A coding is found which decomposes the CA into three interacting 
shift systems, each of which has an independent steady-state distribution. It was 
previously shown that the steady state of this model is a Gibbs state. 
Hence the steady state can be represented in the form Z-le  F, where F is the 
"conditional energy" of the system such that all conditional probabilities are 
continuous. It is shown that the conditional energy of this model has an 
approximate expression in terms of familiar models from equilibrium statistical 
mechanics. 
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1. I N T R O D U C T I O N  

In equilibrium statistical mechanics the steady state (or invariant measure) 
can be obtained by minimizing the appropriate thermodynamic potential, 
but no general procedure is known for obtaining the steady state of a far- 
from-equilibrium system. At this level in our understanding, it is useful to 
study simple but nontrivial models of nonequilibrium systems. In par- 
ticular, it is natural to study cellular automata (CA), since the mathematics 
of equilibrium system is best defined for lattice models with finite cell 
states. (1-3~ In this paper, we study the steady state of a one-dimensional CA 
with irreversible dynamics. The CA was introduced by Oono and Kohmoto 

1 Department of Physics and Materials Research Laboratory, University of Illinois at Urbana- 
Champaign, Urbana, Illinois 61801. 

2Present address: Department of Physics and Astronomy, University of Pittsburgh, 
Pittsburgh, Pennsylvania 15232. 

357 

0022-4715/89/0400-0357506.00/0 �9 1989 Plenum Publishing Corporation 



358 Yeung 

to model chemical turbulence. (4) The steady state is explicitly constructed 
from the microscopic dynamics and an approximate form for the energy of 
the steady state is found. 

Equilibrium states are Gibbs states. This means, roughly speaking, 
that the equilibrium state is the thermodynamic limit of finite-set proba- 
bility measures of the form Z - l e  F where F is the conditional energy, and 
the finite-set conditional probabilities are continuous and positive. A 
formal mathematical definition is given in Appendix A, but the fact that 
equilibrium states are Gibbs states has more than formal consequences. 
For  example, a Gibbs measure ensures the existence of the thermodynamic 
limit of the expectation value of any continuous intensive observable, 
without which there is no guarantee that performing computer simulations 
on larger and larger lattices will give the correct expectation value. 

For  nonequilibrium systems, there is no general argument that the 
steady state is a Gibbs state, but it is known that the steady states of 
particular systems are Gibbs states. Takahashi showed that the steady 
states of all 1D reversible CA are Gibbs distributions ~5) and Oono and 
Yeung showed that the steady state of the 1D CA studied in this paper is 
also a Gibbs distribution. (6~ 

This paper is organized as follows: In Section 2 the chemical tur- 
bulence model is described. The dynamics does not obey detailed balance, 
as the individual cells have a stable (discrete) limit cycle which is perturbed 
by interactions with other cells. In Section 3 we describe the coding which 
decomposes the CA into three shift systems. In Section 4 we demonstrate 
that the steady-state probability of any sequence of cells can be calculated 
in principle and hence the steady state can be found. In addition, we 
calculate the steady-state probabilities of some specific 0M 1 sequences. In 
Section 5 we find an approximate form for the conditional energy which 
generates the steady state. Section 6 is a summary of the results. 

2. THE M O D E L  

The CA model studied in this paper was originally introduced by 
Oono and Kohmoto  (4) to study chemical turbulence ~7) as can be exhibited 
by the Belousov-Zhabotinskii reaction (see, e.g., ref. 8). In this paper, we 
are not concerned with the physical process, so we ignore the physical 
motivation for the model. For  a complete description of this model, see 
Oono and Kohmoto  ~4) and Oono and Yeung. ~6) 

Time, space, and the cell state space are all discrete in a CA (see, e.g., 
refs. 9 and 10). The chemical turbulence model is a 1D three-state nearest- 
neighbor CA; individual cells in the CA can have states 0, 1, or M (M/> 1 ) 
and the state of a cell after an update depends only on the states of the cell 
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and its two nearest-neigbor cells before the update. The CA is completely 
defined by the update  rules for the triplets; we call these the local update  
rules. The local update  rules are given by 

1 if 0.5 ~> xi,, 
ai , ,+l  = T l ( x i ,  t) "= if 0.5<Xi,  l ~  1.5 (2.1) 

if x i , , >  1.5 

where i t  Z (the set of all integers) and ai, t e d = {0, 1, M} is the state of 
cell i at time t. Here x~.t is a weighted average of three cells, 

xi, t = O~ai, t + (1 - o:)(ai 1,, + ai+ 1,,)/2 (2.2) 

where ct ~ [0, 1 ]. The CA is basically a system of diffusively coupled dis- 
crete limit cycles; there is no quiescent state; in the absence of interactions 
among  the cells (i.e., ~ = 1 ), each individual cell has a stable three-cycle (for 
M >  1.5). Each cell will undergo the discrete cycle with 0 followed by M 
followed by ! and then back to 0. In ref. 4 this model  is called the 0M1 

model. 
The phase d iagram for the 0M1 model  is shown in Fig. 1; the control  

parameters  are M and ~. The dashed lines are boundaries  between different 
CAs (i.e., as M and ~ are varied so that  a dashed line is crossed, the update  

. . . .  i 
O I I I I 

0.0 0.2 0.4 0.6 0.8 1.0 
C( 

Fig. 1. The phase diagram for the 0M1 modelJ 6) The dashed lines are boundaries of areas 
with the same local rules. The solid lines indicate different macroscopic phases. The symbols 
T and S indicate the "turbulent" phase and "soliton" phases respectively. The T 1 subphase is 
the area around ct = 1/3 and M = 4. The other symbols indicate other phases not discussed in 
the text. 
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rules for one or more of the triplets are changed). The spatial-temporal pat- 
terns are the observable, so we group together different CAs with similiar 
spatial temporal patterns into "macroscopic phases." As shown in Fig. 2, 
there are two types of interesting spatial-temporal patterns. The patterns 
are obviously different; the first pattern seems to contain solitons while the 
second seems to be turbulent. Therefore, we call the phases the S phase (for 
soliton) and the T phase (for turbulent). The regions i n parameter space 
with these phases are delimited by solid lines in Fig. 1. In this paper we will 
be interested in the T phase. Table I shows the local update rules for 
one of the CAs (the regime around a = 0.3, M =  4) in the T phase. This 
particular CA is denoted the T~ subphase. 

3. THE C O D I N G  

The fundamental idea of the coding is to decompose the CA into three 
shift systems. The distributions of the shift systems are asymptotically inde- 
pendent, so the steady state can be found by obtaining the distributions on 
the three subsystems separately. The decomposition is done in two steps. 
First, the system is mapped into a soliton picture which, in ref. 6, is called 
the P-I representation. The dynamics in the P-I representation looks like 

It�9149 1111 11 MHNXMXM 11 11 �9 M]OtXKMX 11 ~ I I~[ X �9  
111111 R 1111111 a I 111 l i f t  11 H 11 11 

1 ~ 111 111 1 | 11~I~ 
�9 I ~J~ �9  1111 11 �9149 11 XR 1 111 111111 ~ ~ I1  

B1 ~ 1111 I1  �9 11 ~ K  1 111111 I ~ 11 

11 ~ MI~4M 111111111 1 111 . l l ~ � 9  11111~1( 1111 �9 
I 1111 I IH I~  ~�9 111 1 �9 11 1 11XM 

11 
11 11 ~ 111111111  �9 1 ~ 1 �9 1111 111111 1 ~  

1 7m P t ~  111 1 M ~ ~ 1 1  �9 
1 1 ~ M)~MMMM~ 11 11 1111 ~2~ 1 I~  11 ~L~N 1 1 
IP~ 11 111111111  ~L~ �9 I ~  111 �9 11 1111 1 

1 1 , ~  1111~111~111 1 . ~  . 1 1  

11 I 1~ 11111 P~CK1111 11 N 1111111 1 ~ ~ N 

1 1  H 11 ~ � 9  11 ~MM 1 ~1 ~ 1 R l I j 1 1 1 1 1 1 1  
I ~ 1 1 ~ "  ~ 1111 1111111 1 

!~KRKNH 1111111NKM~II~ 11111 �9 MXX �9 11 W�9 kllMX~ IQI 
11 111111 1111111 1111111111 11111111 

~ I o [  111111111 ~ 1111111 ],O~Xz, t �9149 1111 ItKR�9149 11 
�9 111111 11111 11111111 111111 11 

�9 ~ 11111111111 ~ 111111111 ~ 111111 I~MX 1111 �9 
11111111 111 111111 1111 1 

1111111111111N 11111111111 ~ 11111111 ~ 111111 
1111111 1 I l l l  11 
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I ~ 1111111111111111111111111111111  1111111111 1111111 
111 ~ ) O ~  

11 ! 1111111111111111111111111111111  11111111 111111 

11111111111111111111111111111111111  111111 11111 

~ 1 1 1 1 1 1 ~ 1 1 1 1 1 1 1 1  R K ~  
1111111111111111111111111111111111  1111 1111 
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111111111111111111111111111111111  11 111 
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Fig. 2. Typical space-time patterns of the 0 M 1  m o d e l .  (41 Time flows from top to bottom. The 
horizontal direction is the spatial direction. The empty cells actually contain 0. The T phase 
looks turbulent. 



Steady State Chemical Turbulence 

Table I. The Local Update  Rules 
for the  T 1 Subphase a 

000 001 OOM 101 IOM M O M  

U ~ ~ U U 
M M 0 M 0 0 

010 001 01M 111 l l M  M 1 M  

0 0 0 0 0 1 

OMO OM 1 O M M  1M 1 1 M M  M M M  

1 ! 1 1 1 1 

a Only 18 rules are shown, since the others can be obtained by 
the symmetry of the update rules. The triplets with adjacent 
M and 1 are not present in the steady state. The rules for the 
remaining triplets are the same for all CA in the T phase. 
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that of a 1D hard rod gas. Second, a variation of a map introduced by 
Sinai ~11) is used to decompose the "hard rod gas" into three interacting 
shift systems. This is called the P-II representation. Explicit proofs are 
given in ref. 6; in most cases the proofs are simple and are made by inspec- 
tion of the local update rules in the T phase. 

We start with the 0M 1 system with initial measure #o on configuration 
space 0 o = (0, 1, M)  z and, for simplicity, we choose/2o to be the uniform 
product measure which assigns probability 1/3 to each state. We notice 
that if the initial state is updated twice, all configurations with l's and M's 
adjacent to one another are eliminated. The local rules for the remaining 
triplets (i.e., those without adjacent M and 1) are the same for all sub- 
phases within the T phase. This accounts for the similarity of the spatial- 
temporal patterns in the T phase; the dynamics of all CAs in the T phase 
are the same after two updates. The system obtained after two updates is 
denoted (T, O1, # i ) -  (T, T2Oo, #oT-2), where T is the CA update. Note 
that any differences in the steady states of the CAs in the T phase are due 
to differences in/21. In general, the differences between the steady states of 
the subphases are difficult to observe. 

The first coding is the map to the P-I representation. We denote the 
P-I representation by ($1, X1, vl) and the one-to-one map to P-I by 
~b: (T~ O1,/21) ~ ($1, $1, v~). The idea behind this mapping is that instead 
of considering the state of each cell, we can define the CA by the types and 
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dynamics of the points where the states of the cells change. We call such 
a point a domain wall or, for simplicity, just a wall. 

The first step is to classify and find the dynamics of all isolated domain 
walls. Consider a section of the lattice of the form MMMO11. After one 
update the section becomes 111000, after two updates, O00MMM, and after 
three updates, MM0111; the original form is recovered but shifted one site 
to the left, so a left-traveling soliton consists of three types of walls. There 
is an analogous set of walls for the right-going soliton. These are all the 
possible types of walls in (21, for a total of six types of walls. 

We can consider these isolated walls as solitons with an internal phase 
~b of period three; we set ~b = 0 for MMMO11, ~b = 1 for 111000, and q~ = 2 
for O00MMM. After this, ~b is again 0, but the soliton is shifted to the left. 
We can eliminate the internal phase variable by mapping to a larger lattice, 
so the isolated soliton shifts one site at every update. This map ~b is shown 
in Table II and an example of coding is shown in Fig. 3. Each soliton 
is assigned a position and direction on the larger lattice based on the 
position, internal phase, and direction of the soliton on the original lattice. 

The dynamics in the P-I representation is simple. A noninteracting 
soliton will simply shift one site in its direction. The only interaction occurs 
when two solitons traveling in opposite directions are either one or four 
sites apart; in that case both solitons reverse directions. An example of the 
dynamics is shown in Fig. 4. The dynamics is similiar to that of a hard-rod 
gas. We use a coding devised by Sinai (n) to separate left- and right-going 
solitons. This coding was originally used by Sinai (n) and Aizenman et 
aL (12) to show that a 1D hard rod gas in Bernoulli. 

1111 * 0 * 0 

MM ~ * 0 * 0 

11 ~ 11 * 0 * 0 

11 * 0 * 0 

M / ~  * 0 0 

111 111 * 0 0 * 

I~ * 0 0 * 

/ ~  11 i ~  * 0 0 * 

11 11 * 0 0 * 

(a) (b) (c) 

Fig. 3. (a) An example of two walls interacting; the format is the same as in Fig. 2. (b) The 
configuration in part (a) mapped into the P-I representation. Stars and circles indicate the 
positions of the two solitons. The interaction looks like an elastic hard-rod collision. (c) The 
situation in part (b) if the interaction distance of four sites is subtracted between the two 
solitons and the symbols are exchanged during a collison. The solitons seem to pass through 
one another. 
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Fig. 4. An example of the dynamics in the P-I representation. This figure shows the 0M1 
model on a 40-site lattice after mapping to the P-I representation. Note that this looks like 
a set of solitons with variable-distance hard-core interactions. 

T h e  b a s i c  i dea  o f  S i n a i ' s  c o d i n g  is t h a t  co l l i s i ons  o n l y  o c c u r  w h e n  

s o l i t o n s  a r e  a specif ic  d i s t a n c e  a p a r t ;  so if t h i s  d i s t a n c e  b e t w e e n  s o l i t o n s  is 

e l i m i n a t e d ,  t h e  s o l i t o n s  wil l  s e e m  to  p a s s  t h r o u g h  o n e  a n o t h e r  (see Fig.  3c). 

T h e  d i s t a n c e  s u b t r a c t e d  d e p e n d s  o n  w h e t h e r  n e i g h b o r i n g  s o l i t o n s  a re  a n  

e v e n  o r  a n  o d d  n u m b e r  of  s i tes  a p a r t .  W e  k e e p  t r a c k  o f  t h e  d i s t a n c e  sub -  

t r a c t e d  b e t w e e n  a p a i r  o f  s o l i t o n s  b y  a s s i g n i n g  a sp in  + 1 o r  - 1 to  e a c h  

so l i ton .  3 S o l i t o n s  h a v e  t h e  s a m e  s p i n  if  t h e  p a i r  a re  a n  e v e n  n u m b e r  o f  s i tes  

a p a r t  a n d  w h e t h e r  t w o  s o l i t o n s  a re  a n  e v e n  o r  a n  o d d  n u m b e r  of  s i tes  

a p a r t  is u n c h a n g e d  b y  t he  d y n a m i c s .  T h e  o n e - t o - o n e  m a p  O f r o m  t h e  P - I  

r e p r e s e n t a t i o n  to  t he  new,  P - I I  r e p r e s e n t a t i o n  is g i v e n  b y  

X o  = Y 0  

Xi=Xi_~+(yi--yi_l)--q(yi--yi_~) if i > 0  

Xi=Xi+~--(y~+l--yi)+q(y~+l--yi) if  i < 0  

(3.1)  

w h e r e  

q ( y )  = )f4 if  y is e v e n  
(3.2)  l l  if y is o d d  

3 In ref. 6, a color, red or blue, was assigned to each soliton instead of spin. Spin is used here 
in order to use more standard terminology. 
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and y,. is the P-I position of the i + 1 soliton at, or to the right of, the origin 
and xi is the soliton's P-I[ position. The spin of a soliton is defined by 
whether y~ is even or odd at some arbitrarily chosen time to, 

+ 11 i f  yi(to) i s  e v e n  ( 3 . 3 )  

s i =  _ if yi( to)  iS odd 

The direction of the solitons is unchanged by O, 

dir~ = { + 1 if solution i is going to the right (3.4) 
- 1 if soliton i is going to the left 

We denote the P-II representation by ($2, ~r'2, V2). 
In the P-II representation, the CA update shifts all solitons one step 

in the solitons' direction. If a collision occurs, the indices, spins, and 
directions of the colliding solitons are all exchanged. There is an added 
complication, however, because the first soliton with y ~>0 serves as a 
reference point for the map from P-I to P-II. If a soliton passes through 
y = 0, the reference point is changed. In order to maintain the uniqueness 
of the map from P-I to P-II, it is necessary to change the indices and 
positions accordingly. Let 

z; = x~(t) + dir~(t) (3.5) 

The exchanges at collisions are accounted for by 

f z '  if z ; >  ' i+1 Zi+l 

zi = 4]z'i I if z; < z'i_ 1 
{, z; otherwise 

(3.6) 

where zi is the new position of the ith soliton if the reference point does not 
change. Let ~ = 1 if zo < 0, ~ = - 1  if z 1/> q(zo - z _ l ) ,  and e = 0 otherwise. 
Here q is the function defined in (3.2). The entire update in the P-II 
representation is 

x i ( t  + 1) = zi+~ + eq(z~ - Zo) 

s i ( t +  1) =si+~(t) (3.7) 

diri(t + 1) = dir~+ ~(t) 

If the index 0 soliton passes the origin to the right, the index 1 soliton 
becomes the new reference soliton (e = + 1); then all indices are decremen- 
ted by 1 and all positions incremented by q(zl  - Z o ) .  If the index - 1  soliton 



Steady State Chemical Turbulence 365 

Table II. Direction and Phases of a Soliton between Sites n and 
n + l  in the {0, 1, M }  Representation and the Corresponding Soliton 

Position in the P-I Representation (6),~ 

Configuration Phase Direction Position in P-I 

10M 0 Right 3n 

M01 1 Right 3n + 1 

M01 2 Right 3n + 2 

M01 0 Left 3n + 2 

103~ 1 Left 3n + 1 

10M 2 Left 3n 

Site n is underlined. 

becomes the new reference sol�9 (e = -1 ) ,  then all indices are incremen- 
ted by 1 and all positions decremented by q(z  o -  z ~). 

The P-II representation can be considered to be three interacting shift 
systems: all left-going soliltons as one subsystem L, all right-going sol�9 
as another subsystem R, and the spin sequence as a third subsystem S. The 
three systems interact when sol�9 pass the origin, causing all three 
systems to be shifted by an appropriate amount. The dynamics of the three 
subsystems are shown in Fig. 5. 

Finally, to close this section, we note some restrictions on the posi- 
tions of sol�9 The separation between a sol�9 and the next sol�9 

. .  - - . :  "�9176 : : ; : o : 

"�9 " , ' -  i , o , ", ,o �9 Q �9 , 

% " - "  ~ "~ " Z , " | 
~ " ,  �9 "~ �9 i I 

�9 o �9 , ", i | 
, . . . .  i I �9 , , ,  �9 . , | e~ 

o. �9 �9 ". ". i '  , '  = 0 I| 
" �9 " " i a , '  �9 0 

: : . . . .  ; , '  o �9 
. - ~  , �9 �9 . . , �9 , J , 

. ' : ' :  ~  ~  : , �9 

", ~ ",  , ,  . ~ ~ i ~ �9 

. . . .  "~  I : :  " 
".�9149176176176176176176176176 *o~176 ~ " .  , '  o,* � 9  

. . . .  " . :  . ,  ; 
�9 ~ , .  , .  , ,  - ,  - .  , �9 , 

D 

l 

i 

~ o o . . o  . . . . . .  
~  . . . . . . . .  

~ 1 7 6 1 7 6  . . . . .  

�9 . . . . .  ~ 1 7 6  . . . .  
. . . . .  o . . . . . .  
. ~  . . . . . .  
4 � 9 1 4 9  . . . . .  o . o  

, o o .  . . . . . . . .  
~ 1 7 6 1 7 6  . . . . . . . .  
�9 ~ . . . . . .  . . , .  
~ 1 7 6  . . . .  , ~  . . . .  

~ . . . . .  ~ , . . ~  

. . . .  ~ . . . . . . .  

. + ~ 1 7 6 1 7 6 1 7 6 1 7 6  

. . . .  ~ . . . . . .  ~ 
. . . . . . . . . .  ~  

. ,  . . . . .  ~ . . . .  

~ . . . . . . . . . . .  
. . . . . . . . . .  ~  

. . . . . . . . . .  ~  

RIGHT SPIN 

Fig~ 5. The example in Fig. 2 mapped into the P-II representation. The system can now be 
divided into three parts; a left-going lattice (left), a right-going lattice (middle), and a spin 
lattice (right). Here we have used + ( + 1 spin) and �9 ( -  1 spin). 
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going in the same direction is 4 + 6 i  ( i=0 ,  1,2,...) and the separation 
between a soliton and the next soliton going in the opposite direction is 2i 
(i = 0, 1, 2,...). The positions of the solitons are all odd or all even at any 
one time. These restrictions can be verified by following the coding. 

4. THE STEADY STATE 

The main point of Section 3 is that the 0M1 model can be decom- 
posed into three interacting shift systems. In this section we will show that 
the distributions of the three shift systems are asymptotically independent 
of one another, so that steady state can be found by calculating the dis- 
tribution on each subsystem separately. We show how the distributions can 
be obtained and then, in Section 5, use the result to find an approximate 
form for the energy. 

Let the initial uncorrelated configuration be at t = 0. The maximum 
range of correlations, after two updates (t = 2), is five sites. This configura- 
tion can be mapped into the P-II representation, so sections of the P-II 
subsystems which are close together will be correlated. These correlated 
sections, however, are separated by the dynamics. 

The displacement of each subsystem is the sum of a systematic shift 
plus an extra shift due to solitons passing the origin. The extra shift is 
proportional to the difference between the number of solitons passing the 
origin to the left and the number passing to the right. By considering the 
symmetries of the CA rules and of the initial distribution (i.e., both the 
local rules and the initial distribution are invariant under space inversion 
and space translation), the distributions of left- and right-going solitons 
must be the same and be translationally invariant. Therefore, the number 
of left- and right-going solitons passing the origin during t updates are both 
of O(t) for large t and the net shift due to solitons passing the origin must 
be of O(x/7 ). The result is that the displacement of right-going solitons 
during t updates is t +  O(xF) ,  the displacement of left-going solitons is 

- t  + O(x/~), and the displacement of the spin sequence is of O(x//-t). 
Initially, regions close to each other on the L, R, and S subsystems are 
correlated with each other, but as t becomes large, these initially correlated 
regions rapidly separate from one another. Therefore, for large t, there is 
no correlation between the separate subsystems; correlations only exist 
within each individual subsystem. The steady state is then the product 
measure of the distributions of the three subsystems. The distribution on 
each subsystem is unchanged by the shift dynamics; so we can find the 
steady state by finding the distribution of each subsystem at any update t 
at which the map into the P-II representation is possible. 

We will obtain the steady state for the T1 subphase. In this subphase, 
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there are no adjacent l's and M's after one update, so we can use the P-II 
coding at t = 1. This makes the calculation easier, since the maximum 
range of correlations at t = 1 is only three sites; however, the discussion 
below can be easily adapted for the other subphases in the T phase. We 
denote the steady state by (T, ~1, #~). The steady state can be obtained in 
three steps: 

1. The probability distribution #1 on I21 after one update is 
calculated at t = 1. This distribution can be found in a systematic 
manner by using conditional probabilities. 

2. The distribution of spins is calculated. The spins of two neigh- 
boring solitons are parallel if, in the P-I representation, the 
solitons are an even number of sites apart, and the spins are anti- 
parallel if the solitons are an odd number of sites apart. 

3. The distributions of left- and right-going solitons are obtained. 
The distribution of the left-going and right-going solitons are the 
same, so the calculation is only necessary for one of the sub- 
systems. 

Let Pm(ala2...am) be the probability w.r.t. #1 of the m-length 
sequence ala2 . . .a  m 1am, and Pm(alalaz. . .am) be the conditional 
probability of state a E d if the states of the m cells immediately to the 
right are al a2.. .a, , .  As shown in Appendix B, if the sequence al a2.. .am_ 1 
contains any of the subsequences M, 00, 01, 10, or 1 . . .  10, the conditional 
probabilities are independent of a~,,, 

P,~(aolala2...a m lam)=Pm_1(aolala2. . .am_i)  (4.1) 

Therefore, the #1 probability of any finite-length 0M1 sequence can be 
obtained from the probability of length 2 sequences and the conditional 
probabilities PI(alM),  P2(alOM), P2(a]00), P2(al01), Pz(a l l0) ,  and 
P m ( a l l l - . . l l O )  (for V a ~ d  and m - 3 , 4 , 5 , . . . ) .  The Pm(O)'s and 
Pm(alO )'s needed to calculate the #1 probability of any 0M1 sequence are 
obtained in Appendix B and the values are shown in Table III. 

The next step is to calculate the distribution on each of the three 
subsystems in the P-II coding. First, the distribution of spins is found. 
The point to remember is that two neighboring solitons have parallel 
(antiparallel) spins if, in the P-I representation, the solitons are an even 
(odd) number of sites apart. In order to calculate the probability of a 
n-length spin sequence, we need to sum over the #1 probabilities of all finite 
0M1 sequences, which, in the P-II coding, has n solitons and the correct 
spin sequence. 

As a demonstration, we perform the calculation for two spin sequen- 

822/55/1-2-24 
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Table III. The 0M1 Probabilit ies Needed to Calculate the 
Pl Probabilit ies of Long 0M1 Sequences a 

P2(O0) 16/81 P2(11) 15/81 
P2(01) 15/81 PI(MM) 4/81 
P2(0M) 8/81 

P2(OIO0) 1/3 P2(OIOM) 1/3 
P2(1 I00) 1/2 P2(1 I OM) 1/2 
P2(M100) 1/6 P2(MIOM) 1/6 
P2(O[O1) 8/15 edOlM) 2/3 
P2(l[O1) 3/15 Pa(IIM) 0 
Pz(MIO1) 4 / 1 5  PI(MIM) 1/3 

P3(OlO) 25/243 P 7 ( 0 1 5 0 )  0.00635065 
P4(OlO0) 25/729 P 8 ( 0 1 6 0 )  0.00338702 
P5(0130) 50/2167 P 9 ( 0 1 7 0 )  0.00183463 
P6(0140) 2 5 / 2 1 6 7  Plo(O180) 0.00098788 

" We need (a) the probabilities of length-2 0M1 sequences, (b) the 
conditional probabilities given M, 00, 01, and 0M, and (c) the 
probabilities of m-length sequences beginning and ending with 0 
with all l's in between. The probabilities Pro(01" 20) (here 01k0 
indicates there are k l's between the two O's) are shown up to 
m= 10. 

ces. The distribution is symmetric w.r.t, flipping all spins, so it is only 
necessary to obtain the probabil i ty that  the two spins are parallel and the 
probabil i ty the two spins are antiparallel. To calculate the probabil i ty that 
the spins are antiparallel, we must  sum over all two-soli ton sequences in 
which the two solitons, in the P-I  representation, are an odd number  of  
sites apart,  

P~( + - ) = P3(OMO) + P d o m m m o )  + P v ( O M M M M M O )  + . . .  

+ PB(010) + Ps(01110) + P7(0111110) + --- 

+ P4(100M) + P6(10000M) + Ps(1000000M) + . . .  

+ P4(M001)  + P6(M00001)  + Ps(M0000001)  + .-. 

+ P3(101) + Ps(10001) + P7(1000001) + . . .  

+ P 3 ( M O M )  + Ps(MOOOM) + PT(MOOOOOM) + . . .  

= P ' ( -  + ) (4.2)  

where all probabilities on the rhs are w.r.t. /~1. The probabil i ty that  the 
spins are parallel is given by the sum over all 0M1 sequences with two 
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solitons, which, in the P-I representation, are an even number of sites 
apart, 

Ps( + + ) = P4(OmmO) + P6(OMMMMO) + "'" 

+P4(0110)+P6(011110)+  P8(01111110)+ .. .  

+ Ps(1000M) + PT(10000M) + P9(1000000M) + -.. 

+ P~(MO001) + P7(MO0001) + P9(MO000001) + -.- 

+ Pa( 1001 ) + P6(lO0001) + Ps(lO000001) + .. .  

+ P4(MOOM) + P6(MOOOOM) + Ps(MOOOOOOM) + .,. 

= P ; ( -  - ) (4.3) 

The expressions can be evaluated using Table lII. The result is 
Ps( + + ) / P , ( + -  ) =  15/7 {to obtain the actual probabilities, we divide Ps 
by 2 x [Ps( + + ) + Ps(+ - )] }. The probability of longer spin sequences is 
calculated in the same manner as the two-spin sequences. The calculation 
can be made systematically, i.e., a simple computer program can be written. 
Table IV shows the probability of all sequences of five or less spins. 

Using this result, we can find the relative probabilities of some two- 
soliton sequences. For  example, the sequences M O M  and MOOM differ, in 
the P-II representation, only in that the spins of the two solitons are 
antiparallel in M O M  but are parallel in MOOM. Therefore, in the steady 
state, 

P3(MOM)oo/P4(MOOM)oo = Ps( + + )/P,( + - ) = 15/7 ~ 2.14 

[here Pm(O)oo is the probability w.r.t. #oo]. This result is exact, but, 
as a check, a numerical simulation of the 0M1 model on a 330-site 
lattice gives P3(MOM)oo/P4(MOOM)oo =2.16+_0.04. Note that w.r.t. Pl,  
P3(MOM)/P4(MOOM) = 3. 

As another example, the three-soliton sequences MOM01 and 
MOOMMO1 differ, in the P-II representation, only in that, in MOM01 the 
second soliton has a different spin from the others, while in MOOMMO1, all 
three solitons have the same spin. Therefore in the steady state, the ratio 

Ps(MOMO1 )oo/P7(MOOMMO1)oo = P,( + - + )/Ps( + + + ) = 4.61 

(Table IV), while w.r.t. #1, Ps(MOMO1)/Pv(MOOMMO1)= 9. 
We next obtain the distributions of right-going solitons. The soliton 

distribution is transtationalty invariant, so it is defined by the distribution 
of the separations between solitons. This distribution is calculated in the 
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Table IV. The Probability of Spin Sequences of Five or Fewer Spins" 

(a) 5-spin probabilities 

+ - + - +  0.21650071 + - + - -  0.10089543 

+ - +  + -  0.10038570 + - +  + + 0.04513681 

+ - - + -  0.10038570 + - - + +  0.05147652 

+ - - - +  0.04495603 + . . . . .  0.02208127 

+ + - + -  0.10089543 + + - +  + 0.04462708 

+ + - - +  0.05147642 + +  . . . .  0.02190049 

+ + + - +  0.04513681 + + + - -  0.02190049 

+ + + + -  0.02298127 + + + + +  0.01016373 

(b) 4-spin probabilities 

+ - + -  0.31739614 + - +  + 0.14552251 

+ - - - +  0.15186222 + . . . .  0.06703730 

+ + - - +  0.14552251 + + - -  0.07337701 

+ + + - -  0.06703730 + + + + 0.03224500 

(c) 3-spin probabilities 

+ - +  0.46291865 + - -  0.21889952 

+ + -  0.21889952 + + +  0.09928230 

(d) 2-spin probabilities 

+ -  0.68181817 + +  0.31818181 

a The probabilities are symmetric w.r.t, flipping all spins, so only sequences beginning with + 
spin is shown. 

same manner as the spin distribution. As noted in Section 3, neighboring 
solitons going in the same direction must be 4 + 6i sites apart (i = 0, 1, 2,...). 

As a demonstration, we consider the probability that two right-going 
solitons are four sites apart; this is the sum over all 0M1 sequences consist- 
ing of two right-going solitons four sites apart with any number of left- 
going solitons between them. There are six sequences consisting of just the 
two solitons: M[00[1 ,  M[000[  1, - ~ [ 0 1 0 1 g ,  zr l01101M, 1 0 [ g [ 0 i ,  and 
10[MM101,  where ~ means not x and the position of a soliton is indicated 
by ]. There are another eight sequences consisting of two right-going 
solitons four sites apart with one left-going soliton between them: 
M I O I M 0 [ i ,  M I 0 0 [ M 0 [ i ,  M[OIMMOI'f, and MIOO[MMMO]'I, and 
h~01 [ 110[ 1, 1Q0[ 11 [0l 1, M0[  1 [00 [ 1, and M 0  [ 11100[ 1. The probability 
that two neighboring right-going solitons are four sites apart is the sum of 
the #1 probabilities over the 14 0M1 sequences, 
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Psop(4) = P4(M00I ) + Ps(M0001) + Ps(JQ010M) 

+ P6(M0110M) + Ps(10M01) + P6(10MM01) 

+ Ps(MOMO'[ ) + P6(MOOMO'f) + P6(MOMM01 ) 

+ PT(MOOMMOi ) + Ps(2Q0101 ) + P6(?~r01101 ) 

+ P6(M01001 ) + PT(M011001 ) 

To find the probabili ty that the solitons are ten sites apart,  we need to sum 
the /~t probabilities of 42 0M1 sequences. There are even more terms for 
larger separations. Nevertheless, the probabilities can be calculated 
systematically. Table V shows the two-soliton separation probabilities for 
i ~< 9. The probability drops off exponentially for i/> 6. 

To find the steady-state probability for general 0M1 sequences, we 
must find the separation probabilities for sequences with more than two 
solitons going in one direction. The probabilities for such larger sequences 
can also be found systematically. For  example, we have found the four- 
soliton separation probabilities Ps~p(i,j,k) for all i,j,k<~40, where 
Ps~p(i, j, k) is the probability that, in the P-II  coding, the first soliton is i 
sites away from the second, the second is j sites from the third, and the 
third is k sites from the fourth. These probabilities will be used to find an 
approximate form for the free energy of the soliton subsystems. 

Table V. The Probabil i ty That Nearest Neighbor 
Solitons Are Separated by 4 + 6i, Psep(4 + 6i), and the 

Corresponding Nearest Neighbor Interaction 
Energy f (4  + 6i) ~ 

i Ps,p(4 + 6i) P(i- 1)/P(i) fl(4 + 6n) 

0 0.543209910 - -  0.61026 
1 0.255488992 0.470332 1.36458 
2 0.113627821 0.444746 2.17487 
3 0.049497757 0.435613 3.00583 
4 0.021549616 0.435365 3.83740 
5 0.009385843 0.435563 4.66855 
6 0.004088129 0.435560 5.49967 
7 0.001780627 0.435560 6.33078 
8 0.000775569 0.435560 7.16191 
9 0.000775569 0.435560 7.99303 

aFor large i, P~ep(4+6i)=~(l+x/5)Psep(4+6(i--1)) and 
f(4+6i)=f(4+6(i--1))+0.831. Here f(4) is chosen so that 
Y~i e --f(4 + 6 0 : 1 .  



372 Yeung 

As with the spin distribution, we can use the separation probabilities 
to find the steady-state probabilities of some 0M I  sequences. For  example, 
in the P-II coding, M001 and M00001 differ in that the two right-going 
solitons are four sites apart in M001 but ten sites apart in M00001. 
The probability that there are no left-going solitons on the 4 + 6i sites 
is then sum over all configurations without left-going solitons on 
those sites; Zj~>i+lZk~>jP~ep(4+6k). TO compute this sum, we use 
Table V and for k>~9, we use the asymptotic form Psep(4+6k)=  
0.43556 P~p[4 + 6(k - 1)]: 

P6( M00001)o~ 

P4(M001) 

_ P~ep(10) prob. of no left soliton on 10 sites 

P~ep(4) prob. of no left soliton on 4 sites 

= 0.4703 • 0.4407 = 0.2071 (4.5) 

As a check, the simulation gives P6(M00001)~/P4(M001)~ = 0.211 _ 0.05. 

5. THE ENERGY F U N C T I O N A L  

Oono and Yeung (6) have shown that the steady state of the T phase 
is a Gibbs random field; the steady state is the limit of finite set 
probabilities of the form Z-le  - r  where Z is the partition function and F 
is the conditional energy (see Appendix A). In this section we show that 
from the steady-state distribution we can find an approximate form for F, 
in the P-II representation, based on the Hamiltonians of some familiar 
equilibrium systems. In order to find the energy of a configuration in the 
0M1 representation one would then use the one-to-one P-II coding to map 
the configuration into the P-II representation. 

The steady state is the product measure of three independent distribu- 
tions. This means that the energy F is the sum of the energy for each 
subsystem, 

F=Fs+ FL + FR (5.1) 

where Fs is the energy of the spin configuration, FL is the energy of the left- 
going solitions, and FR is the energy of the right-going solitons. 

The most general form for Fs is an Ising Hamiltonian with long-range 
and many-body interactions, 

Fs= Z + . . .  (5.2) ~ n l ,  n2, n3 o i o i  + nl  S i  + n2 S i  q- n3 ~ n l  ~ i ~  
i, n l  :> 0 i n 3 > n 2 > n l > O  
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The terms involving an odd number of spins is zero since F is invariant 
with respect to a global flip of the spins. The spin coupling can be obtained 
from the spin distribution. First, assume that only the nearest neighbor 
coupling j~2) is nonzero. Then j~2) can be found from the two-spin 
distribution 

j~2)= �88 ln[P,(  + - ) P , (  - + ) /P , (  + + ) P s ( -  - )3 

= �89 In P, (  + - ) /Ps(  + + ) = 0.381 (5.3) 

where the numerical result is found using Table IV. To check the con- 
sistency of the nearest neighbor approximation, we next assume that the 
interactions involve at most three adjacent sites, i.e., only the nearest 
neighbor coupling j~2) and the next nearest neighbor coupling J2 (2) are non- 
zero. If the nearest neighbor approximation is reasonable, j~2) obtained 
with this assumption must be close to (5.3) and j(2) must be small 
compared to j}2). We now need the three-spin distribution to obtain the 
couplings 

j(2) _ 1 In Ps( + - + ) /Ps(  + + + ) = 0.385 (5.4) 1 - - 4  

and 

j~2) = ~_ In [(P( + - - ) P ( + + - ) / P ( + - + ) P ( + + + ) ] = O . O I 0 4  (5.5) 

Therefore the approximation (5.3) for j~2) seems to be reasonable. As a 
further check we can assume that interactions involve at most four adjacent 
sites. With this assumption, in addition to the two-body couplings j~2), 
j(2), and J3 (2), it is also possible that the four-body coupling r(4) is non- " 1 , 2 , 3  

zero. These couplings are found from the four spin distributions. The four- 
body coupling is 

j(4)t.2.3 = ~-{ln[P,( + + + - ) Ps( + + - + ) P,( + - + + ) Ps( + - - - )J 

- l n [ e s ( +  + + + )  P , ( +  + - - )  P , ( + -  + - )  P , ( + - -  + ) ] }  

- 0.022 (5.6) 

and 

J ( 3 2 ) = ~ { l n [ P s ( +  + + - ) P s ( +  + - - ) P s ( + -  + - ) P s ( + - - - ) ]  

- l n [ P s ( +  + + + ) P s ( +  + - + ) P s ( +  - + + ) P s ( + - -  + ) ] }  

=0.0015 (5.7) 

Using the four spin probabilities, we find J2(2)=0.0106 and J[2)=0.380. 
This is again close to the results for J12)=0.381 and J~2)=0.0104 given by 
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(5.3) and (5.5). We can find interaction with longer range, but allowing for 
the possibility of longer range interactions does not seem ao appreciably 
affect the values of the shorter range couplings. Furthermore, j~2) is one 
order smaller than j~2), and rl4) and is two orders smaller than j~2); so "~ 1,2,3 

the longer range coupling is expected to be smaller still. Therefore, the 
nearest neighbor interaction seems to be the most significant term in Fs. 

The distributions of left- and right-going solitons are translationally 
invariant, so the energy functional is a function only of the separation 
between solitons. The most general form of FR is 

FR=~f(xi+l--xi)+ ~ g j t , J 2 ( X i + j l - - X i ,  X i + j 2 - - X i + j l ) ' q l - " ' "  ( 5 , 8 )  
i i, Jl, J2 

where xi is the position of the ith right-going soliton. FL is obviously of the 
same form. First assume that the only nonzero term is the two-body 
nearest neighbor interaction f Then f can be found from the two-soliton 
separation distribution, f o c - l n  Psev. Table IV shows the values of f 
assuming only.nearest neighbor interaction, and f4 has been chosen so that 
~i>~oe-f(4+6i)=l. We find that f(4)=0.610,  f(10)=0.136, and f 
increases linearly for large i as f (4  + 6i) = f ( 4  + 6 ( i -  1 )) + 0.831. To check 
the consistency of the nearest neighbor approximation, we next assume 
that only the terms involving at most three adjacent solitons, f and g~,l, 
are nonzero. Since f can always be absorbed into g1,1, to fix the two-body 
term, we set gl,l(kl,  k2) to 0 if either kl or kz=4. Then f can be found 
from the four-soliton distribution; 

f (4  + 6i) = - In  Psep(4, 4 + 6i, 4) ~o PsCP(4' 4 + 6j, 4) 
J 

(5.9) 

where Psep is calculated using the method described in Section 4. Using 
(5.9), we find that f (4)=0.614,  f(10)=1.36,  and asymptotically 
f (4  + 6i) = f (4  + 6 ( i -  1)) + 0.831. The values for f are close to the values 
found with the nearest neighbor assumption. 

Since g~.1(4, 4+6 i )  is set to zero, the three-body interaction is given 
by 

e - g l , l ( 4  + 6i,4 + 6j) = e - 2f(4) + f ( 4  + 6i) + f ( 4  + 6j) Psep( 4' 4 + 6i, 4 + 6j, 4) 
P~p(4, 4, 4, 4) 

(5.1o) 

For example, g~.l(10, 10)=0.037, gl,l(16, 10)=0.035, and g1,1(16, 16)= 
0.029. Since f l o - f 4  is ~0.75, the contribution from the two-body term is 
20 times larger then the three-body contribution. 
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Our results indicate that the actual energy can be well approximated 
by including only nearest neighbor coupling terms, Fs  by a nearest 
neighbor Ising model with antiferromagnetic coupling /~J=0.38 and FL 
and FR as a particle system with an interaction f (Table V) depending only 
on the separation between nearest neighbor particles. 

As a demonstration, we use the approximate energy to calculate the 
probability of some 0M1 sequences. The method used is the same as 
described in Section 4; map to the P-II representation and find the 
probability of each subsystem separately, except that, instead of using the 
steady state probability, we use Z - r e  F where F is the approximate 
energy. We consider the sequences 

(a) I O M M O M O I O O 1 - - . 3 R -  7 R -  7L + l l L -  15L + 17R + 

(b) M 0 1 1 0 M 0 0 1 0 1 ~ 2 L  + 8R + 12R- 16R + 18L-  20R + 

(c) I O M M O O M - ~  3 R -  7 R -  7L 

(d) M O M  ~ 2R + 2L 

The rhs is the P-II coding, where, for example, 5 L -  indicates a spin - 1  
left-going soliton at site 5. To eliminate the Z -1 factor, the probabilities are 
calculated w.r.t. P3(MOM)~o.  Using the approximate energy, 

P3(MOM)o~ = Z leSc~ 

P12(10MMOM01001 ) o~ = Z 1(1 -- e --f(4)) e - If(4) + f(lO)] e -2f(g)eJo~5 

= O.O00880P3(MOM)o ~ (5.11) 

PlI(MOllOMO0101)o~ = Z- l (1  - e f(4))e-E2f~a)+f(l~176 

= O.O0887P3(MOM)oo 

P7(10MM00M)o~ = Z - l ( 1  - e - f (4 ) )e  -f(a)e - 2J0~2 

= O.0368P3(MOM)~ 

where ~ =  1 / ( e J+e - J ) .  The actual steady-state probabilities, obtained 
used the method described in Section4, are, for sequence (b), 
O.O00882P3(MOM)oo; for sequence (c), O.O00884P3(MOM)o~; and for 
sequence (d), O.03613P3(MOM)oo. For the sequences considered, the 
probabilities (5.11) using the approximate energy are within 1% of the 
actual steady-state probabilities. 

6. S U M M A R Y  

We have calculated the steady state of a 1D CA model of chemical tur- 
bulence. The calculation is possible since the CA can be decomposed into 
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three interacting shift systems: a spin system and left- and right-going 
soliton systems. Initially, there are correlations among and within the three 
shift systems; however, the dynamics destroys the correlations among the 
shift systems while preserving the distribution within the individual sub- 
systems. The calculation of the steady state is thus reduced to finding the 
distribution on the individual subsystems. This can be done in a 
straightforward manner. Interestingly, the initial state has no correlations 
beyond finite distances, but the elimination of correlations among the sub- 
systems is accomplished by producing exponentially decaying correlations 
within each subsystem. 

The steady state is a Gibbs field, so there must be an energy functional 
which generates the steady state. Since the steady-state distributions of the 
three subsystems are independent, the energy functional is the sum of the 
energies for the subsystems. We have found an approximate form for 
the energy functional based on the Hamiltonians of familiar equilibrium 
systems. The spin distribution is well approximated by the distribution of 
an Ising model with antiferromagnetic nearest neighbor coupling. For the 
soliton systems, we used an energy dependent only on the separation 
between neighboring solitons. If the system is closed (i.e., finite), the shift 
dynamics obviously conserves the energy. 

In ref. 6 we showed that the T-phase dynamics in K (for 
Kolmogorov), which means that the Kolmogorov-Sinai entropy is positive 
(see, e.g., ref. 13). 4 This is reflected in the fact the correlations among the 
subsystems are all destroyed by the dynamics. This is actually a fairly 
common feature of many nonequilibrium systems studied so far; the 
dynamics makes the system uncorrelated in some sense. For example, van 
Beijeren and Schulman ~14~ (also see ref. 15) studied the fast rate limit of a 
lattice gas driven by an external electric field E; in this case the dynamics 
in the direction parallel to the E field are so fast that correlations in that 
direction can be ignored. In another case, an Ising system with two types 
of dynamics [spin flip (Glauber) and spin exchange (Kawasaki) dynamics] 
occurring at different temperatures was studied. (16'17~ In this case the solu- 
tion is found in the limit that the Kawasaki dynamics occurs at infinite 
temperature and at such a fast rate that the spins are uncorrelated on short 
length scales. This may account for why many nonequilibrium steady states 
so far studied show mean field behavior. 

On a more technical level, one can extend the domain wall approach 
to other CAs: find all the domain walls present in the steady state and then 
characterize their dynamics. In higher dimensions the dynamics may be 

4 Even though the T-phase dynamics is K, it is strongly suspected that the dynamics is not 
Bernoulli, i.e., there is no one-to-one map. 
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very complicated, but for a 1D nearest neighbor CA the dynamics should 
be simple. The dynamics of the domain walls consists of translation, 
creation, destruction, and collision. So the complete classification of the 
types of domain walls and their dynamics would allow one to examine CA 
from a different and sometimes simpler viewpoint. 

A P P E N D I X  A 

In this Appendix, we give the definition of a Gibbs state. Let Z ~ be a 
v-dimensional lattice, d be the (finite) set of single cell states, and /2  c_ d z' 
be the set of all configurations on Z ~. Let ~ be the family of all finite 
subsets of Z ~ and s d F be the configuration space on F ~  ~-. Let A[~ F be 
a probabili ty measure on g2r; then ]A F is a random field on finite set F. 

Let the interaction V be a real-valued, translationally invariant func- 
tion on the disjoint union UF~o~. ~v'~ F. Let U =  Z~\F. For  every F e  J ,  the 
conditional energy is defined as 

UF(X, y ) =  ~ V(XNF,,)+ ~ V([x  v Y]NF') (A.1) 
F ' ~  F F '  E ~176 r ~ F ~ O , F '  ~ F c ~ O  

where x E ~ F  and y E f 2 r ,  Here X[F' indicates the restriction of x on F '  and 
x v y = z ~ s is the configuration with Z IF = X and z I F c = Y" The first term 
is the energy of x e s on F and the second term is the interaction energy 
of x with "boundary condition" y E (2F c. If the conditional energy exists, it 
defines a conditional probabili ty measure on F, 

# F ( X ,  y )  = Z F l ( y ) e  -vF(x'y) (A.2) 

where 

ZF(y)= ~ e -U~(~'y) (A.3) 
x ~ ff2 F 

Then ]~F(O, y) is a Gibbs random field on o~. 
Let {Fn}2=0 be an increasing sequence of finite subsets of Z v. The 

lim, ~ o ~  #Fn(Y[F~)=]A is the thermodynamic limit of the Gibbs random field 
with interaction V and boundary condition y. The thermodynamic limit is 
called a Gibbs state; it is not necessarily unique; for example, the limit may 
depend on the particular sequence {F, } or the boundary condition. 

In general, a sufficient condition for the convergence of the conditional 
energy is that the interaction density is finite. (1) Consequences of # being a 
Gibbs state include: 

1. The conditional probabili ty #F(O,  y) on finite subset F is con- 
tinuous w.r.t, y ~ s ~ for all F ~  ~ .  
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2. Let g be a continuous function on /2. Let (g)F(ZIF~) be the 
expectation value of g on F with boundary condition z[~, 

(g>r(ZlF) = ~ g(xv zlF) I~,~(X, ZI~) 
x~g2F 

where z e/2. Then 

(A.4) 

f a g ( z )  dl~(z)= ~a ( g )F(ZlF)  dl~(z) (A.5) 

for all F e ~  and continuous functions g on O. These are known as the 
DLR (Dobrushin-Lanford-Ruelle)  equations. (1-3) 

3. # minimizes the free energy F/T  = ( U )  - S, where S is the entropy 
for fixed ( U ) .  

Note that 1 and 2 are sufficient conditions for # to be a Gibbs state. 

APPENDIX  B 

In this Appendix we obtain the probabililties needed to generate /q.  
As in Section 4, let t = 0 for the initial configuration and let the initial 
distribution /~o on O0=  {0, 1, M }  z be the uniform product distribution 
which assigns probability 1/3 to each cell state. Using the T 1 subphase rules 
(Table I), we find 

if ai, l = M ,  thenai, o = 0  

if ai.lai+l,l=O1, t hena i ,0=0  
(B.I) 

if a i l, lai, l = 1 0 ,  thenai, o = 0  

if ai-l ,  lai, lai+l,l=O00, then ai,0 = 1 

Therefore, if the sequence a la2 . . . a , , _  1 contains any of the subsequences 
M, 01, 10, or 000, no additional information about  the state of cell 0 can 
be found from the state of cell m; the conditional probability is independent 
of a m, 

Pm(aolal ""am - l a,,,) = P, ,_ l(aolal ...a,,,_ 1) (B.2) 

Actually, P3(a1000) = P2(alO0), so only Pz(al00) is needed. For  m ~> 2 the 
only sequences not containing these subsequences are the sequences con- 
sisting of all l's. A sequence of l's must end with 0, so we also need the 
conditional probabilities of the form Pm(al 11 --. 110). 
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The #1 probability of small length 0M1 sequences a 1 a2. . .a , , ,_  l a,, can 
be easily found; just apply the local CA rules to the middle m cells of all 
configurations in d m + 2 count the number of times the sequence aa . . . a  m 
appears, and divide by Is el  " + 2 The conditional probability is then simply 

Pm(ala l  . . .  a,,,) = P,,, + 1 (aal "'" am)/P~(al  "'" am) 

This method is impractical for finding Pro(011''" 110) for largem. 
Using the T 1 subphase rules (Table I), we find that if am,1 = 1, am,0 may be 
either 1 or M and 

i f  am, 1 = 1 and am,0 = 1,  then, 

wi thprob 1, a m + l , o = M a n d a m + l , l =  ] 

and 

if am. 1 = 1 and a,~,o = M, then 

f with prob. ~, a m + l , o = l a n d a m + l , 1 = l  

with prob. ~, a , ,+ t ,o=Manda , , ,+~ ,~  = 1 

with prob. 5, a,~ + 1,1 = 0 

(B.3) 

Then 

Pro(01 ..- 10) = P r o ( 0 1  . - -  10 and am,o = 1) + Pro(01 "'" 10 and am, 0 = M )  

(B.4) 

and 

Pm(011 . - -10 )=  5Pm_ 1(01 . . .  lO and am_ l,o= M )  (B.5) 

(B.3) is a recursion relation for the probabilities Pro(01 . - - I0  and a,~,o = 1) 
and Pro(01 --. 10 and am,0 = M), 

P m ( O 1 . . . l O a n d a , , , , o = l  ) I ~  1/9] 
Pro= P,,,(01- 10 and a,~,o~= M) = 1 / 3 j P m _ l  (B.6) 

The eigenvalues of the transfer matrix are ~(1 _ x//-5). Asymptotically only 
the eigenvector with the larger eigenvalue is significant, so for large m, 
Prn---~(1 +x/-5) P,~_ 1. The initial vector P2 can be obtained from the 
probability of length-2 0M1 sequences: P2(10 and a 2 ,o=1 )=1 /27  and 
P2(10 and a2,o= M ) =  5/27. Then Pm(011 ' ' -10)  and Pm( l l . - -10 )  are 
easily obtained by applying the relations (B.4)-(B.6) to P2. 



380 Yeung 

A C K N O W L E D G M E N T S  

The au thor  is grateful to Y. O o n o  for m a n y  useful discussions and  

comments  and  for critical reading of the manuscript .  This work is suppor-  
ted in part  by N S F  grant  DMR-86-12860 through the Univers i ty  of Il l inois 

Materials  Research Labora tory ,  and  by DMR-87-01393.  

REFERENCES 

1. D. Ruelle, Statistical Mechanics (Duke University, Durham, North Carolina, 1975); 
Thermodynamic Formalism (Benjamin, New York, 1978). 

2. R. L. Dobrushin, Theory Prob. AppL 13:197 (1968). 
3. O. E. Lanford, in Lecture Note in Physics, Vol. 20, A. Lenard, ed. (Springer, Berlin, 1973). 
4. Y. Oono and M. Kohmoto, Phys. Rev. Lett. 55:2927 (1985). 
5. Y. Takahashi, private communication (1985). 
6. Y. Oono and C. Yeung, J. Stat. Phys. 48:593 (1987). 
7. Y. Kuramoto and T. Yamada, Prog. Theor. Phys. 56:679 (1976); T. Yamada and 

Y. Kuramoto, Prog. Theor. Phys. 56:681 (1976); Y. Kuramoto, Prog. Theor. Phys. Suppl. 
64:346 (1978); H. Yamazaki, Y. Oono, and K. Hirakawa, J. Phys. Soc. Jpn. 44:335 (1978); 
46:721 (1979). 

8. T. Winfree, Sci. Am. 230:82 (1978); J.J. Tyson, in The Belousov-Zhabotinsky Reaction, 
S. Levine, ed. (Springer, Berlin, 1976). 

9. J. Demongeot, E. Cole, and M. Tchuente, Dynamical Systems and Cellular Automata 
(Academic Press, New York, 1985). 

10. S. Wolfram, Theory and Applications of Cellular Automata (World Scientific, Singapore, 
1986). 

11. Ya. Sinai, Soy. Math. Dokl. 4:1818 (1963). 
12. M. Aizenmann, S. Goldstein, and J. L. Lebowitz, Commun. Math. Phys. 39:289 (1975). 
13. P. Waiters, An Introduction to Ergodic Theory (Springer, New York, 1982). 
14. H. van Beijeren and L. S. Schulman, Phys. Rev. Lett. 53:806 (1984). 
15. J. Krug, J. L. Lebowitz, H. Spohn, and M. Q. Zhang, J. Star. Phys. 44:535 (1986). 
16. A. DeMasi, P. A. Ferrari, and J. L. Lebowitz, Phys. Rev. Lett. 55:1947 (1985); A. DeMasi, 

P.A. Ferrari, and J. L. Lebowitz, J. Stat. Phys. 44:589 (1986); J. M., Gonzalez-Miranda, 
P. L. Garido, J. Marro, and J. L. Lebowitz, Phys. Rev. Lett. 59:1934 (1987). 

17. R. Dickman, Phys. Lett. A 122:463 (1987). 


